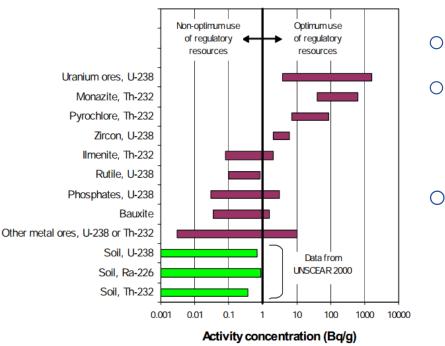


Creation of NORM in filter materials – why, how and what magnitude. Situation in Estonia

Institute of Physics, University of Tartu

Taavi Vaasma

LIFE ALCHEMIA SEMINAR 03-04.03.2020, VIIMSI, ESTONIA



LIFE 16 ENV/ES/000437

What is NORM?

- NORM naturally occurring radioactive material.
- Material giving rise to enhanced exposure due to radionuclides of natural origin, 238U and 232Th decay series and 40K.

• Practical considerations! [1]

Represent the upper bounds of the ranges of activity concentration found in normal rocks and soil.

Natural radionuclides from the U-238 series	1 kBq kg ⁻¹
Natural radionuclides from the Th-232 series	1 kBq kg ⁻¹
K-40	10 kBq kg ⁻¹

Set as clearance and exemption values [2]

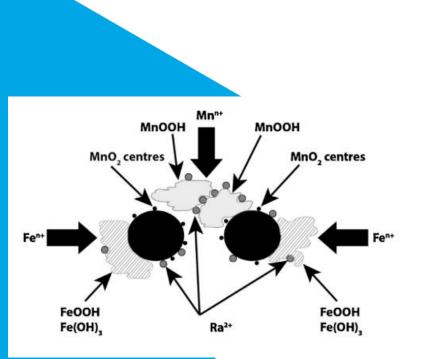
[1] INTERNATIONAL ATOMIC ENERGY AGENCY, Management of NORM Residues, IAEA-TECDOC-1712, IAEA, Vienna (2013).
[2] European Parliament, 2014. Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom a, Off J Eur Commun L13

Where is NORM created?

- Through human activities in processing minerals and raw materials.
 - Extraction of rare earths from monazite
 - Processing of niobium/tantalum ore
 - Oil and gas production
 - Geothermal energy production
 - Zircon and zirconium industry
 - Production of phosphate fertilisers
 - Cement production, maintenance of clinker ovens
 - Coal-fired power plants, maintenance of boilers
 - Phosphoric acid production,
 - Primary iron production,
 - Groundwater filtration facilities,

- . . .

NORM specifics



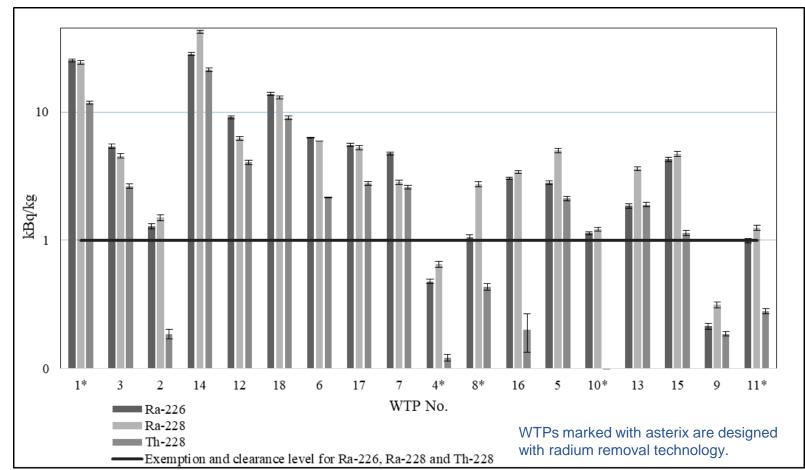
- Generally low radionuclide activity concentration, compared to radioactive waste from nuclear industry;
- Large amounts, can be up to millions of tonnes (E.g. aluminum production; phosphate fertilizer production);
- Can exhibit large heterogeneity in chemical as well as radiological composition.

NORM in drinking water treatment plants (DWTP)

- Not that widespread issue in Europe. Estonia stands out!
- Main concern in Estonia is with elevated concentrations of 226Ra and 228Ra.
- Main processes in radionuclide accumulation:
 - Radionuclide adsorption onto filter material. The magnitude depends on the used filter material;
 - Formed sludge containing insoluble Fe-compounds where Ra is co-precipitated.

Sludge may get trapped between filter material particles and is not completely removed during filter backwash.

Where can NORM be created?


• WTP-s designed for radionuclide removal: Usage of catalytic filter material(s)

• WTP-s not designed for radionuclide removal:

May be unintentional consequence during a removal process of Fe and Mn, as co-precipitation/adsorption processes still can take place

Previous study on NORM creation in DWTP in Estonia

- Study[3] on Cambrian-Vendian (Cm-V) fed treatment plants was carried out in 2014-2015.
- Selection was ~ 50% of national Cm-V groundwater production (18 DWTPs).

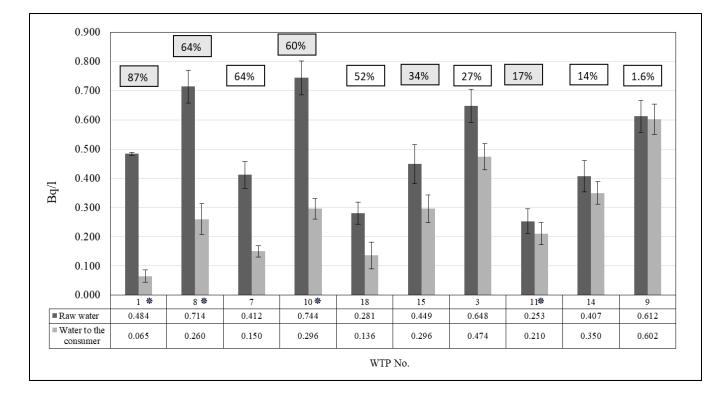


Average values: Ra-226 - 7.6 kBq/kg Ra-228 - 8.0 kBq/kg Th-228 - 5.6 kBq/kg

Filter material exceeding exemption levels – approximately **300 tonnes**

[3] Leier, M., Kiisk, M., Suursoo, S., Vaasma, T., Putk, K., 2018. Formation of radioactive waste in Estonian water treatment plants. J. Radiol. Prot. 39, 1–10.

NORM accumulation


Group A- WTPs using only silica or crushed granite as a filter material

Group B - WTPs using MnO2-coated filter material

Yearly growth (kBq/kg/y)

Ra-226	SD	Ra-228	SD
GroupA			
0.38	0.36	0.34	0.26
Group B			
2.56	3.51	2.80	3.59

Purification efficiency

- In general, high Ra purification effeciency where Ra-removal is employed.
- With other filter media, significant part of radionuclides is not removed from groundwater.

Exemption values have been exceeded - NORM

Notify the regulatory body

Conduct radiation safety assessment for the exchange of filter material

Establish procedures and requirements for filter material exchange and determine disposal possibilities

If NORM has been created, what then?

- Filter material can still be used.
- DWTPs obtaining water from Cm-V aquifer should determine the radionuclide activity concentrations in filter material prior filter material exchange:
 - Protect the workers from receiving additional doses;
 - Find suitable disposal option for the material, reduce possible hazards to humans and environment;
- Exchanging material that is NORM.
- Requirements for measurement and monitoring are derived from the European Basic Safety Standard directive.

Radiation safety assessment – why?

- Necessary to determine possible radiation exposure situations for workers (general public), to ensure their exposure to additional doses is limited.
- Exposure situations:
 - > During normal operation radon inhalation, external gamma radiation;
 - During maintenance work radon/thoron inhalation, external gamma radiation, ingestion of radionuclides (via dust);
 - > During accident, e.g. fire in the DWTP; breakage of the filter columns.

Prevention/slowing down the creation of NORM

• Frequent backwashing of filters?

- > Additional costs with energy consuption and water use;
- May have low efficiency with filter materials designed for Ra removal.
- Frequent exchange of filter material?
 - Economically not sustainable if the filter material is still functioning.
- o Alternative technologies?
 - HMO based treatment technology ensuring compliance with indicative dose in consumer water as well as prevent/slow down the creation of NORM.

Management of NORM

- Main considered management and disposal options:
 - \circ $\,$ Recycle and reuse $\,$
 - o Municipal, industrial or hazardous material landfill
 - Radioactive waste disposal site
 - NORM disposal site
- Belgium example of NORM disposal –

	Activity concentration			
Type of treatment	Input (single batch of residues)		Output (after processing)	
Landfill for hazardous waste	Cexemption	RP 122 II		
	C _{max}	50 kBq/kg	C _{average} < 0.2 kBq/kg	
Landfill for non-	Cexemption	RP 122 II		
hazardous or inert waste	C _{max}	10 kBq/kg	C _{average} < 0.2 kBq/kg	

Landfilling as the main disposal option

Exemption criteria based on RP 122 – **0.3 mSv/y** EU BSS – **1 mSv/y**

Remaining questions on NORM management

Clearance and exemption levels for NORM in secular equilibrium:

Natural radionuclides from the U-238 series	1 kBq kg ⁻¹
Natural radionuclides from the Th-232 series	1 kBq kg ⁻¹
K-40	10 kBq kg ⁻¹

• If not in equilibrium – values from EU BSS Table B, Part 2.

10 kBq/kg for Ra226 and Ra228

Valid for moderate amounts!

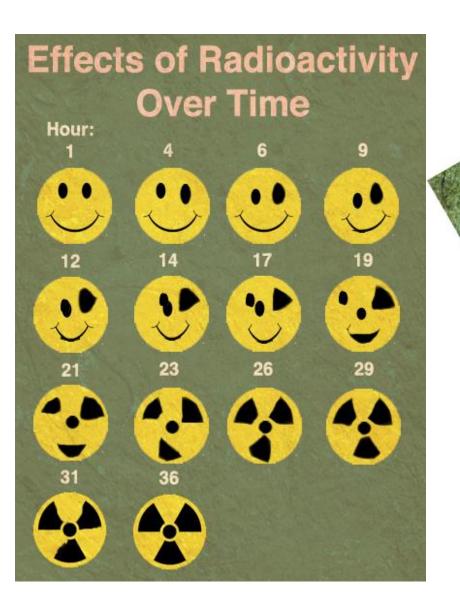
- Moderate amount in the magnitude of **one tonne!**
- NORM amounts in most cases higher!
- When to conduct the radiation safety assessment?

*COMMISSION OF THE EUROPEAN COMMUNITIES, Principles and Methods for Establishing Concentrations and Quantities (Exemption Values) below Which Reporting is not Required in the European Directive, RP-65, CEC, Luxembourg (1993). *INTERNATIONAL ATOMIC ENERGY AGENCY, Derivation of Activity Concentration Levels for Exclusion, Exemption and Clearance, Safety Report Series no.44, IAEA, Vienna, 2004.

Information on NORM

- National development plan for radiation safety (2018-2027) ("Kiirgusohutuse riikliku arengukava 2018-2027") -<u>https://www.envir.ee/et/eesmargid-</u> tegevused/kiirgus/kiirgusohutuse-riiklik-arengukava-2018-2027
- National action plan for management of radioactive waste (Radioaktiivsete jäätmete käitlemise riikliku tegevuskava) -

https://www.envir.ee/sites/default/files/tegevuskava_200715.p


 Study by UT for the transposition of the requirements from the EU BSS, involving NORM - <u>https://www.envir.ee/et/eesmargid-</u> tegevused/kiirgus/looduslikud-radionukliidid/uuring-direktiivi-201359euratom-looduslike

Take home messages

- NORM is problematic globally and gaining increased amount of attention for safe handling and disposal options.
- Estonia has quite unique situation in terms of NORM generation from DWTPs.
- First practice of landfilling NORM from DWTP has been established.
- One of the key importance is the increase of awareness on NORM and its creation understanding the main processes and potential risks that are involved.
- DWTP operators:
 - Ensure the drinking water compliance with the radiological parameters to ensure population safety;
 - Monitoring and correct management of NORM to ensure safety of workers and general public;
- If possible, reduce/avoid generation of NORM in the filter HMO based treatment technology? Avoid:
 - Amount of filter material characterization needed;
 - Conducting radiation safety assessments;
 - Filter exchange to be licensed activity;
 - Transport issues with filter material;
 - Elevated indoor radon levels and doses to workers;

0

