Other constituents in the drinking water impacting its quality and their removal needs Overview of the HMO technology and the pilot set up at Viimsi DWTP

Juri Bolobajev

WHAT ARE INDICATOR PARAMETERS AND WHY SHOULD WATER SUPPLIERS REDUCE THEIR CONCENTRATION IN DRINKING WATER?

- A failure to meet an indicator parameter value does not necessarily mean that there is a human health risk from the supply!
- A failure is a signal that there may be a problem with the supply that needs investigation and consideration of whether there is a human health risk.
- Many of the indicator parameters describe the aesthetic quality of water supplies – the characteristics of drinking water that are noticed by consumers because of its appearance, taste or smell
- According to Estonian Regulatory Act [RT I, 26.09.2019, 2] the parametric indicators are as follows:

Al, NH₄⁺, Conductivity, Residual Chlorine, Cl⁻, Mn, Na, COD, TOC, Fe, SO₄²⁻, pH, Turbidity, Taste, Smell, Colour, *Clostridium perfringens*, Coliform bacteria, Total Colony count

TOTAL CONCENTRATION OF Fe, Mn, NH₄⁺, AND OTHER PARAMETERS IN STUDIED GROUNDWATER (OCTOBER 2018 – FEBRUARY 2020)

Table 1. Average values of water quality parameters and corresponding threshold limits according to [RT I, 26.09.2019, 2]

Parameter	Results of analyses (average ± st. dev)	Threshold limit
Fe, mg/L	0.195 ± 0.055	0.200
Mn, mg/L	0.118 ± 0.050	0.050
NH ₄ ⁺ , mg/L	0.644 ± 0.144	0.500
рН	8.12 ± 0.27	6.5 – 9.5
Conductivity, µS/cm	883 ± 67	<2500

IRON IN DRINKING WATER

- Iron is the second most abundant metal in the earth's crust, of which it accounts for about 5%
- In drinking-water supplies, iron(II) salts are unstable and are precipitated as insoluble iron(III) hydroxide, which settles out as a rustcoloured silt.
- Anaerobic groundwaters may contain iron(II) at concentrations of up to several milligrams per litre without discoloration or turbidity in the water when directly pumped from a well, although turbidity and colour may develop in piped systems at iron levels above 0.05–0.1 mg/litre
- Staining of laundry and plumbing may occur at concentrations above 0.3 mg/litre

Figure 1. Iron staining https://www.americanwatercollege.org/

MANGANESE IN DRINKING WATER

- Curious facts:
 - Manganese is an essential element for many living organisms, including humans
 - However, the syndrome known as "manganism" is caused by exposure to <u>very high levels</u> of manganese dusts or fumes and is characterized by a "Parkinson-like syndrome"
- Manganese occurs naturally in many surface water and groundwater sources and in soils that may erode into these waters.
- The greatest exposure to manganese is usually from food. Adults consume between 0.7 and 10.9 mg/day in the diet
- The maximum desirable level of manganese is 0.05 mg/L to avoid staining
- At concentrations exceeding 0.1 mg/l, the manganese ion imparts an undesirable taste to beverages

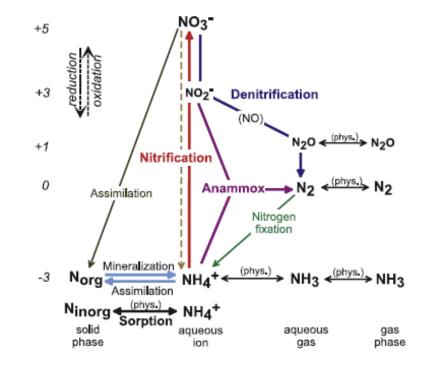
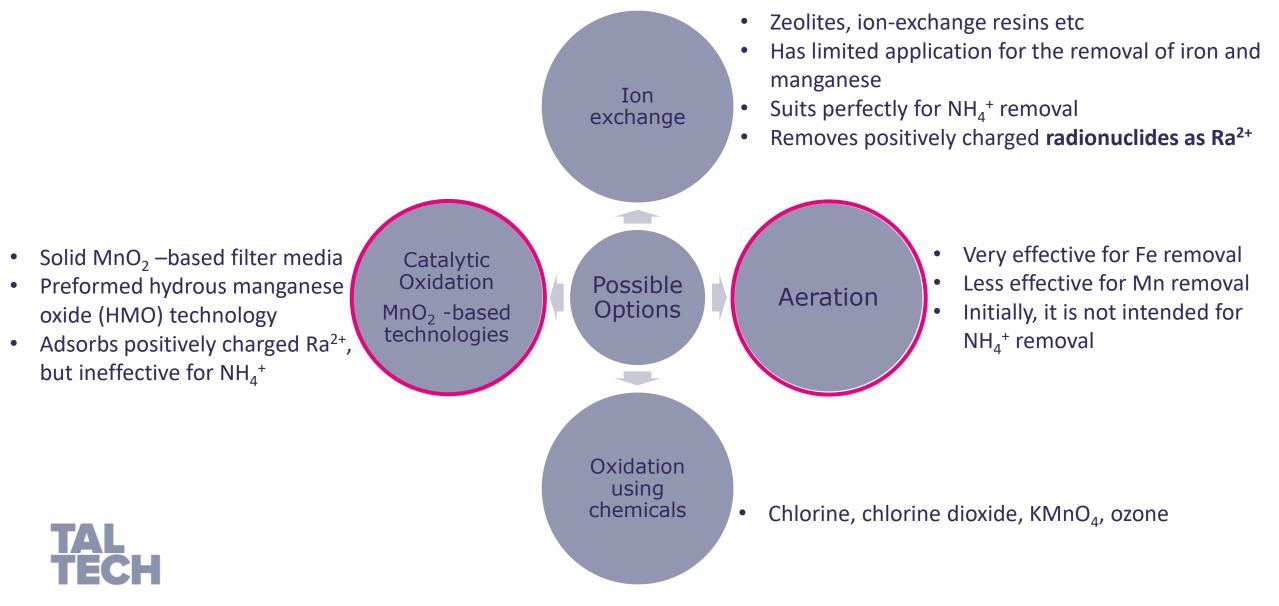
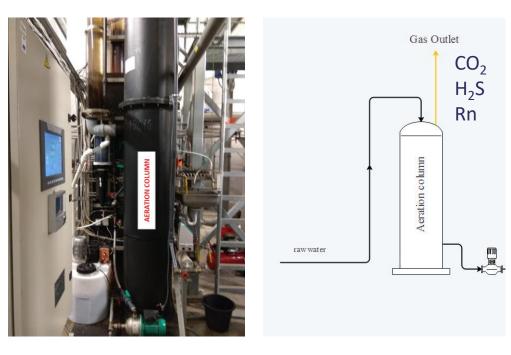
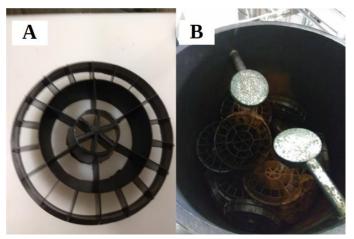


Figure 2. Iron and manganese staining https://www.americanwatercollege.org/

AMMONIUM ION IN DRINKING WATER


- Despite NH₄⁺ is not considered as a toxic substance, this ion is a major constituent of many contaminated aquifers
- There is no conclusive evidence for NH₄⁺ consuming reactions (nitrification or anammox) in the anoxic core of aquifer
- The presence of the ammonium cation in raw water may result in drinking-water containing nitrite (NO₂⁻)


Figure 3. Biogeochemical and physical-chemical processes affecting the speciation of nitrogen in aquatic systems



CONVENTIONAL TECHNOLOGIES FOR THE REMOVAL OF Mn, Fe, NH₄⁺ FROM WATER

The process of water aeration

- Aeration is often the first major process at the drinking water treatment plant
- Aeration is the process of bringing water and air into close contact in order to
 - \checkmark Remove dissolved gases
 - ✓ Saturate water with oxygen

 $4Fe(HCO_{3})_{2} + 2H_{2}O + O_{2} = 4Fe(OH)_{3} \downarrow + 8CO_{2}$ $2Mn(HCO_{3})_{2} + 2H_{2}O + O_{2} = 2Mn(OH)_{4} \downarrow + 4CO_{2}$

MnO₂-BASED TREATMENT

MnO₂ –based filter media

- Pure granular form of MnO₂ (Filox [®], Pyrolox[®] etc)
- MnO₂ coated on a mineral like silica (Birm[®], GreensandPlus[™] etc)

Figure 5. Granular MnO₂ and GreensandPlus[™]

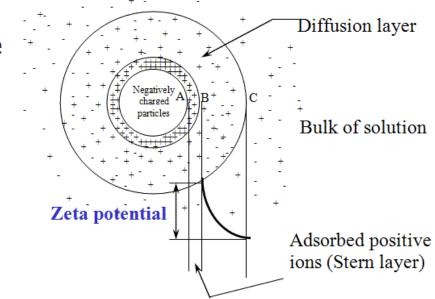
Application of MnO₂ –slurry

- Manganese dioxide is often called hydrous manganese oxide (HMO)
- HMO slurry can be prepared using MnSO₄·H₂O and KMnO₄ according to the reaction:
- $3MnSO_4 \cdot H_2O + 2KMnO_4 \rightarrow 5MnO_2 \downarrow + K_2SO_4 + 2H_2SO_4 + H_2O$
- NaOH solution is used to maintain pH 8 9.5

Figure 6. Preparation of HMO-slurry in laboratory

MECHANISM OF HMO PROCESS

The mechanism of redox precipitation of Fe and Mn


 $2Fe(HCO_3)_2 + MnO_2 + H_2O \rightarrow 2Fe(OH)_3 \downarrow + MnO + 4CO_2 + H_2O$

Why does HMO adsorb Ra²⁺ ?

 At acidic conditions H⁺ reacts with MnO₂ surface to give an anionic exchanger site
 MnO₂ + H⁺ → MnO₂ H⁺

 $MnO_2 + H^+ \rightarrow MnO_2H^+$

- At alkaline conditions hydroxide ion OH⁻ produces the surface for removing cationic species $MnO_2 + OH^- \rightarrow MnO_2OH^-$
- The rise of water pH supports the increase of cationic capacity of HMO particle

Figure 7. The concentration of positively charged ions across negatively charged particle

HMO-based pilot plant structure and principle of operation

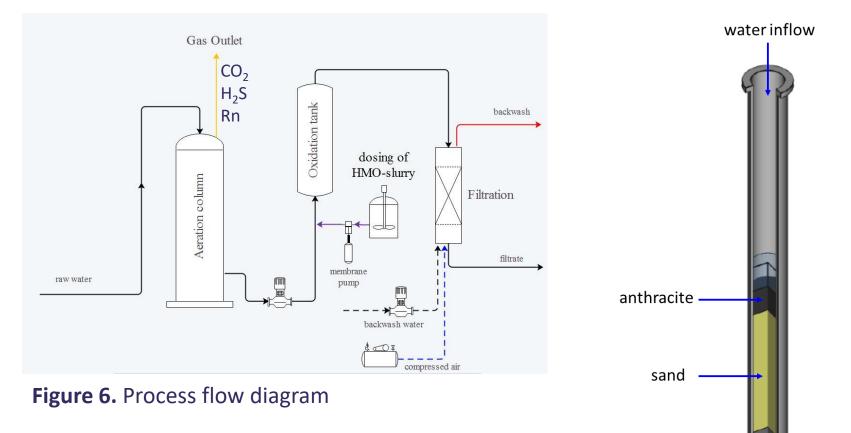
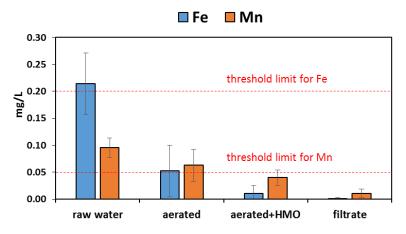


Figure 7. Composition of filter

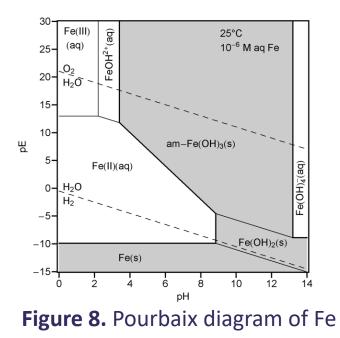
gravel

TAL TECH

HMO-based pilot plant structure and principle of operation

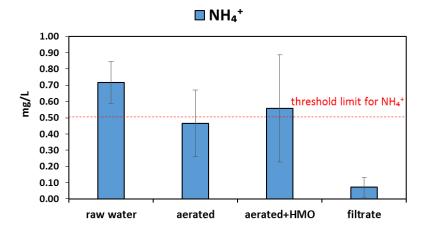

Table 2. Operation of pilot plant

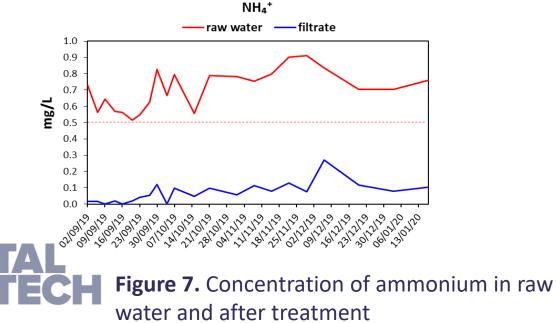
Parameter*	Value
Electricity consumption (kWh/m ³)	1.9
Water flow (L/h)	300
Air consumption (kg/m ³)	0.0113
MnO ₂ (g/m ³)	0.9 - 1.8
Filtration rate (m ³ /m ² /day)	7.0
The rate of HMO-slurry injection (L/h)	0.1 - 0.2


 $^{*}\text{-}$ electricity, air, and MnO_{2} consumptions are given per m^{3} of treated water

Removal of Fe and Mn. (September 2019 – February 2020)

Figure 7. Average concentration of Fe and Mn after each step of treatment


Figure 9. Pourbaix diagram of Mn

What about NH₄⁺ ?

Figure 7. Average concentration within treatment stages in pilot plant

The oxidation of NH_4^+ to nitrate could be described by the net reaction:

 $\begin{array}{l} \mathsf{NH_4^+} + 3.3\mathsf{O}_2 + 6.7\mathsf{HCO_3^-} \rightarrow 0.129\mathsf{C_5H_7O_2N} + 3.37\\ \mathsf{NO_3^-} + 1.04\ \mathsf{H_2O} + 6.46\mathsf{H_2CO_3} \end{array}$

The nitrification process consists usually of two stages:

 ammonium-oxidizing bacteria, i.e. Nitrosomonas, Nitrosospira, Nitrosococcus, Nitrosolobus and Nitrosovibrio, oxidize ammonium ion to nitrite as follows:

 $NH_4^+ + O_2 \rightarrow 2H^+ + H_2O + NO_2^-$

• the nitrite-oxidizing bacteria, i.e. *Nitrobacter, Nitrospira, Nitrospina, and Nitrococcus,* oxidize next the nitrite to nitrate:

$$NO_2^- + 0,5O_2 \rightarrow NO_3^-$$

What if NO_2^- has been formed during bio-oxidation of NH_4^+ ?

Table 1. Threshold limits stated in [RT I, 26.09.2019, 2]

Parameter	Threshold limit
NH ₄ +, mg/L	0.5
NO ₂ ⁻ , mg/L	0.5
NO ₃ -, mg/L	50.0

OÜ Eesti Keskkonnauuringute Keskus Registrikood 10057662 | KMKR EE100067066 Marja 4d, 10617 Tallinn tel 611 2900 | faks 611 2901 | info@klab.ee | www.klab.ee

ANALÜÜSIAKT EE19002895 - Vesi

Tellija:	TALLINNA TEHN Ehitajate tee 5 19086 Tallinn	IKAÜLIKOOL
Proovivõtjad:	Bolobajev, Juri 20.09.2019 09:30 23.09.2019 14:20 24.09.2019 12:01	
Proovivõtuaeg:		
Laborisse tulek:		
Analüüsi lõpp:		
Proovivõtukoha valdaja:		
Proovivõtukoht:		
Proovi märgistus:	Filtraat	

Näitaja	Katsemeetod	Tulemus	Ühik	
Nitrit (NO ₂ ⁻)	EVS-EN ISO 13395	< 0,016	mg/l	

Kinnitas: keskkonna- ja analüütilise keemia osakonna juhataja Katri Vooro

THANK YOU FOR ATTENTION!

European LIFE Project LIFE 16 ENV/ES/000437 is gratefully acknowledged.